Abstract

The dynamic asymptotic instability of autonomous multi-parameter discrete systems under step compressive loading either of constant direction (conservative load) or of varying direction (follower or nonconservative loading) is thoroughly reconsidered using the efficient - and rather forgotten - Lienard-Chipart stability criterion. Attention is focused on the interaction of nonuniform mass and stiffness distribution with infinitesimal damping. Such parameters alone or combined with others may have a tremendous effect on the Jacobian eigenvalues and thereafter on the local asymptotic dynamic instability which – strangely enough –may occur before static (divergence) instability, even in the case of a positive definite damping matrix. It was also found that such systems when unloaded, although being statically stable, under certain conditions may become dynamically locally unstable to any small disturbance. Hopf bifurcations, double zero eigenvalues, double pure imaginary eigenvalues, loading discontinuity and other phenomena are properly established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.