Abstract
In the classic Hotelling–Downs model of political competition, no pure strategy equilibrium with three or more strategic candidates exists when the distribution of voters’ preferred policies is unimodal. I study the effect of introducing two idealist candidates to the model who are non-strategic (i.e., fixed to their policy platforms), while allowing for an unlimited number of strategic candidates. Doing so, I show that equilibrium is restored for a non-degenerate set of unimodal distributions. In addition, the equilibria have the following features: (1) the left-most and right-most candidates (i.e., extremists) are idealists; (2) strategic candidates never share their policy platforms, which instead are spread out across the policy space; and (3) if more than one strategic candidate enters, the distribution of voter preferences must be asymmetric. I also show that equilibria can accommodate idealist fringes of candidates toward the extremes of the political spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.