Abstract
In this work, a ferritic stainless steel coating was manufactured via extreme high-speed-rate directed energy deposition (EHLDED). Microstructural features and tensile behavior were investigated and analyzed. The microstructural analysis confirmed that EHLDED coating was characterized by alternating patterns of columnar dendrites and fine equiaxed dendrites. The average size of the dendrites was less than 1 μm. High-resolution transmission electron microscopy showed that there were a large number of dislocation lines (DLs) and dislocation tangles (DTs) enriched at inter-dendritic solidification structures attributed to the ultrahigh cooling and solidification as well as molten pool movement. In addition, a small percentage of predominantly nanosize carbides with the size ranging from 50 to 90 nm were also observed in dendrites and inter-dendritic solidification structures. The EHLDED coating sample manufactured at the deposition speed of 40 m/min showed a higher strength of 1084 MPa with the ductility 1.27%. Results reveal that the ultra-fine dendrites accompanied with nanosize carbides prepared by EHLDED contributed to achieving high strength of low carbon stainless steel coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.