Abstract

We compare experiments and direct numerical simulations to evaluate the accuracy of the Stokes-drag model, which is used widely in studies of inertial particles in turbulence. We focus on statistics at the dissipation scale and on extreme values of relative particle velocities for moderately inertial particles (St < 1). The probability distributions of relative velocities in the simulations were qualitatively similar to those in the experiments. The agreement improved with increasing Stokes number and decreasing relative velocity. Simulations underestimated the probability of extreme events, which suggests that the Stokes drag model misses important dynamics. Nevertheless, the scaling behavior of the extreme events in both the experiments and the simulations can be captured by the same multi-fractal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.