Abstract

In this paper, we analyze the extreme events of non-stationary time series in the framework of horizontal visibility graph (HVG). We give a new definition of extreme events, which incorporates the temporal structure of the series and the degree of the nodes in the HVG. An advantage of the new concept is that it does not require ad hoc treatment even when the non-stationarity arises in time series. We also use the information-theoretic methods to analyze the degree of nodes in the HVG. In the numerical analysis, we study the statistical characterizations of the extreme events of synthetic time series, including the random noises, periodic time series, random walk processes, and the long-range auto-correlated time series. Then, we study 9 time series in stock markets to identify the extreme events evolving in these non-stationary systems. Interestingly, we find that the daily closing price series perform rather close to the random walk processes, while the daily trading volume series behave quite similar to the random noises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.