Abstract

Discovery of frequent superflares on active cool stars opened a new avenue in understanding the properties of eruptive events and their impact on exoplanetary environments. Solar data suggest that coronal mass ejections (CMEs) should be associated with superflares on active solar-like planet hosts and produce solar/stellar energetic particle (SEP/StEP) events. Here, we apply the 2D Particle Acceleration and Transport in the Heliosphere model to simulate the SEPs accelerated via CME-driven shocks from the Sun and young solar-like stars. We derive the scaling of SEP fluence and hardness of energy spectra with CME speed and associated flare energy. These results have crucial implications for the prebiotic chemistry and expected atmospheric biosignatures from young rocky exoplanets as well as the chemistry and isotopic composition of circumstellar disks around infant solar-like stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.