Abstract

Nitrous oxide (N2O) is an important greenhouse gas and ozone depleter, but the global budget of N2O remains unbalanced. Currently, ∼25% of the global N2O emission is ascribed to uncultivated tropical soils, but the exact locations and controlling mechanisms are not clear. Here we present the first study of soil N2O emission from the Pantanal indicating that this South American wetland may be a significant natural source of N2O. At three sites, we repeatedly measured in situ fluxes of N2O and sampled porewater nitrate during the low water season in 2008 and 2009. In 2010, 10 sites were screened for in situ fluxes of N2O and soil content. The in situ fluxes of N2O were comparable to fluxes from heavily fertilized forests or agricultural soils. An important parameter affecting N2O emission rate was precipitation, inducing peak emissions of >3 mmol N2O m−2 day−1, while the mean daily flux was 0.43 ± 0.03 mmol N2O m−2 day−1. Over 170 days of the drained period, we estimated non-wetted drained soil to contribute 70.0 mmol N2O m−2, while rain-induced peak events contributed 9.2 mmol N2O m−2, resulting in a total N2O emission of 79.2 mmol N2O m−2. At the sites of repeated sampling, the pool of porewater nitrate varied with higher concentrations of (p < 0.05) found in drained soil than in water-logged soil, indicating dynamic shifts between nitrification and denitrification. In the field, O2 penetrated the upper 60 cm of drained soil, but was depleted in response to precipitation. Upon experimental wetting the soil showed rapid O2 depletion followed by N2O accumulation and a peak emission of N2O Assuming that the observed emission of N2O from these wetland soils is generally representative to the Pantanal, we suggest that this undisturbed tropical wetland potentially contributes ∼1.7% to the global N2O emission budget, a significant single source of N2O.

Highlights

  • The atmospheric concentration of nitrous oxide (N2O) is increasing at an accelerating rate with anthropogenic sources estimated to account for ∼38% of the current N2O emission (IPCC, 2007)

  • In this study the focus is on tropical wetlands soils and we present in situ evidence that the world’s largest freshwater wetland (Pantanal, Brazil) acts as significant as a source of N2O

  • The average N2O emission from the Pantanal wetland soils was 10–390 times higher when compared to other unfertilized tropical systems (Matson and Vitousek, 1987), and 4– 6 times higher when compared to fertilizer-induced N2O emission peaks in tropical forest soils (Hall and Matson, 1999)

Read more

Summary

Introduction

The atmospheric concentration of nitrous oxide (N2O) is increasing at an accelerating rate with anthropogenic sources estimated to account for ∼38% of the current N2O emission (IPCC, 2007). This is concerning because N2O is a powerful greenhouse gas (IPCC, 2007) and the most important ozone depleter of the twenty-first century (Ravishankara et al, 2009). Microbial processes play a major role in the global cycling of carbon and nitrogen (e.g., Gruber and Galloway, 2008) and while the cycling of both is closely linked (e.g., Schlesinger, 2010) most focus has been on carbon Both CH4 and N2O are primarily biogenic (IPCC, 2007) and methanogens, nitrifiers, and denitrifiers are key players in regulating the global sources and sinks of CH4 and N2O. In this study the focus is on tropical wetlands soils and we present in situ evidence that the world’s largest freshwater wetland (Pantanal, Brazil) acts as significant as a source of N2O

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call