Abstract

Unique features of Coulomb explosion (CE) of many-electron elemental Xe(n) (n = 13-2171) clusters driven by ultraintense and ultrashort near-infrared laser pulses (peak intensities 10(15)-10(20) W cm(-2) and pulse lengths of 10-100 fs) manifest ion dynamics and energetics in the extreme, with ultrafast (5-15 A fs(-1)) velocities and ultrahigh (keV-1 MeV) energies. Relations were established between the CE attributes, obtained from molecular dynamics simulations and from electrostatic models, and the extreme cluster inner ionization levels (5-36 per ion), in conjunction with the laser parameters required for the attainment of complete outer ionization, which was approximated by cluster vertical ionization (CVI) initial conditions. Interrelationship between electron dynamics and nuclear dynamics stems from the effects of the laser pulse length on the energetics and from the characterization of the border radius for complete outer ionization. Our computational-theoretical analysis semi-quantitatively describes CE dynamics and energetics in the CVI limit and also the energetics in the presence of a persistent nanoplasma, which is in accord with experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call