Abstract

The acid-base analysis method described by Stewart (1981) was applied to the greyhound, an animal that undergoes large changes in intra- and extracellular hydrogen ion concentrations during a race. Increases in plasma [H+] especially during the first 15 min of recovery, induced by increases in lactate concentration in the plasma, were reduced by lowering of PCO2 (hyperventilation) and removal of Cl- from the plasma. [H+] calculated by the Stewart method is similar to that measured directly with a pH electrode when the strong ion difference is within 10 meq/L of resting values (approximately 40 meq/L); thus the measured independent variables were sufficient to account for the [H+] using the Stewart analysis. When the strong ion difference became lower than 30 meq/L, increased variability between measured and calculated [H+] occurred. An error analysis demonstrated the importance of minimizing measurement error of all independent variables, including as many strong and weak electrolytes as possible in the analyses, using the most accurate dissociation constants possible, and understanding the dissociation behavior of the weak electrolytes, especially the plasma proteins, when using the Stewart analysis. The Stewart method of analyzing acid-base balance can contribute to improved training methods for obtaining maximum exercise performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.