Abstract
Context. Atomic carbon can be an efficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the power sources in the molecular gas of high-redshift galaxies. Aims. The recently installed SEPIA 5 receiver at the focus of the APEX telescope has opened up a new window at frequencies 159–211 GHz allowing the exploration of the atomic carbon in high-z galaxies, at previously inaccessible frequencies from the ground. We have targeted three gravitationally lensed galaxies at redshift of about 3 and conducted a comparative study of the observed high-J CO/CI ratios with well-studied nearby galaxies. Methods. Atomic carbon (CI(2–1)) was detected in one of the three targets and marginally in a second, while in all three targets the J = 7→6 CO line is detected. Results. The CO(7–6)/CI(2–1), CO(7–6)/CO(1–0) line ratios and the CO(7–6)/(far-IR continuum) luminosity ratio are compared to those of nearby objects. A large excitation status in the ISM of these high-z objects is seen, unless differential lensing unevenly boosts the CO line fluxes from the warm and dense gas more than the CO(1–0), CI(2–1), tracing a more widely distributed cold gas phase. We provide estimates of total molecular gas masses derived from the atomic carbon and the carbon monoxide CO(1–0), which within the uncertainties turn out to be equal.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.