Abstract

The breakpoints of type-1 NF1 deletions encompassing 1.4-Mb are located within NF1-REPa and NF1-REPc, which exhibit a complex structure comprising different segmental duplications in direct and inverted orientation. Here, we systematically assessed the proportion of type-1 NF1 deletions caused by nonallelic homologous recombination (NAHR) and those mediated by other mutational mechanisms. To this end, we analyzed 236 unselected type-1 deletions and observed that 179 of them (75.8%) had breakpoints located within the NAHR hotspot PRS2, whereas 39 deletions (16.5%) had breakpoints located within PRS1. Sixteen deletions exhibited breakpoints located outside of these NAHR hotspots but were also mediated by NAHR. Taken together, the breakpoints of 234 (99.2%) of the 236 type-1 NF1 deletions were mediated by NAHR. Thus, NF1-REPa and NF1-REPc are strongly predisposed to recurrent NAHR, the main mechanism underlying type-1 NF1 deletions. We also observed a non-random overlap between type-1 NF1-deletion breakpoints and G-quadruplex forming sequences (GQs) as well as regions flanking PRDM9Abinding-sites. These findings imply that GQs and PRDM9Abinding-sites contribute to the clustering of type-1 deletion breakpoints. The co-location of both types of sequence was at its highest within PRS2, indicative of their synergistic contribution to the greatly increased NAHR activity within this hotspot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.