Abstract
Tail risk analysis focuses on the problem of risk measurement on the tail regions of financial variables. As one crucial task in tail risk analysis for risk management, the measurement of tail risk variability is less addressed in the literature. Neither the theoretical results nor inference methods are fully developed, which results in the difficulty of modeling implementation. Practitioners are then short of measurement methods to understand and evaluate tail risks, even when they have large amounts of valuable data in hand. In this article, we consider the measurement of tail variability under the tail scenarios of a systemic variable by extending the Gini’s methodology. As we are very interested in the limit of the proposed measures as the risk level approaches to the extreme status, we showed, by using extreme value techniques, how the tail dependence structure and marginal risk severity have influences on the limit of the proposed tail variability measures. We construct a nonparametric estimator, and its asymptotic behavior is explored. Furthermore, to provide practitioners with more measures for tail risk, we construct three coefficients/measures for tail risks from different views toward tail risks and illustrate them in a real data analysis. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.