Abstract

Let H be a (real or complex) Hilbert space. We characterize the extreme points of the unit ball of the space of 2-homogeneous polynomials on H. We find the exact value of the λ-function for P(2 H) and thus we show that its unit ball is the norm closed convex hull of its extreme points. We also describe topological properties of the set of extreme points, making connections between the set of extreme points and Grassmanian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.