Abstract

<abstract><p>A connected acyclic graph in which the degree of every vertex is at most four is called a molecular tree. A number associated with a molecular tree that can help to approximate the physical or chemical properties of the corresponding molecule is called a topological index. It is of great importance to investigate the relation between the structure and the thermodynamic properties of those molecules. In this paper, we investigated the extreme value of the first reformulated Zagreb index with a given order and degree of a graph. Further, we investigated the molecular trees that attain the maximum and minimum values. As an application, we presented the regression models to predict the acentric factor and entropy of octane isomers. Our extremal graphs give the minimum and the maximum acentric factor and entropy, which satisfied the experimental values.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.