Abstract
Using an inclusion of one reflexive polytope into another is a well-known strategy for connecting the moduli spaces of two Calabi-Yau families. In this paper we look at the question of when an inclusion of reflexive polytopes determines a torically-defined extremal transition between smooth Calabi-Yau hypersurface families. We show this is always possible for reflexive polytopes in dimensions two and three. However, in dimension four and higher, obstructions can occur. This leads to a smooth projective family of Calabi-Yau threefolds that is birational to one of Batyrev's hypersurface families, but topologically distinct from all such families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.