Abstract
A control problem for an operator differential equation in a Hilbert space is considered. The problem consists in constructing an algorithm generating a feedback control and guaranteeing that the solution of the equation follows a solution of another equation, which is subject to an unknown disturbance. We assume that both equations are given on an infinite time interval and the unknown disturbance is an element of the space of square integrable functions; i.e., the perturbation may be unbounded. We construct two algorithms based on elements of the theory of ill-posed problems and the extremal shift method known in the theory of positional differential games. The algorithms are stable with respect to information noises and calculation errors. The first and second algorithms can be used in the cases of continuous and discrete measurement of solutions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.