Abstract

We study the following problem: given a class of logic programs ¢, determine the maximum number of stable models of a program from ©. We establish the maximum for the class of all logic programs with at most n clauses, and for the class of all logic programs of size at most n. We also characterize the programs for which the maxima are attained. We obtained similar results for the class of all disjunctive logic programs with at most n clauses, each of length at most m, and for the class of all disjunctive logic programs of size at most n. Our results on logic programs have direct implication for the design of algorithms to compute stable models. Several such algorithms, similar in spirit to the Davis-Putnam procedure, are described in the paper. Our results imply that there is an algorithm that finds all stable models of a program with n clauses after considering the search space of size O(3 n/3 ) in the worst case. Our results also provide some insights into the question of representability of families of sets as families of stable models of logic programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.