Abstract

The eccentricity matrix of a connected graph $G$, denoted by $\mathcal{E}(G)$, is obtained from the distance matrix of $G$ by keeping the largest nonzero entries in each row and each column and leaving zeros in the remaining ones. The $\mathcal{E}$-eigenvalues of $G$ are the eigenvalues of $\mathcal{E}(G)$. The largest modulus of an eigenvalue is the $\mathcal{E}$-spectral radius of $G$. The $\mathcal{E}$-energy of $G$ is the sum of the absolute values of all $\mathcal{E}$-eigenvalues of $G$. In this article, we study some of the extremal problems for eccentricity matrices of complements of trees and characterize the extremal graphs. First, we determine the unique tree whose complement has minimum (respectively, maximum) $\mathcal{E}$-spectral radius among the complements of trees. Then, we prove that the $\mathcal{E}$-eigenvalues of the complement of a tree are symmetric about the origin. As a consequence of these results, we characterize the trees whose complement has minimum (respectively, maximum) least $\mathcal{E}$-eigenvalues among the complements of trees. Finally, we discuss the extremal problems for the second largest $\mathcal{E}$-eigenvalue and the $\mathcal{E}$-energy of complements of trees and characterize the extremal graphs. As an application, we obtain a Nordhaus-Gaddum-type lower bounds for the second largest $\mathcal{E}$-eigenvalue and $\mathcal{E}$-energy of a tree and its complement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.