Abstract
The duration of extremes in time leads to a phenomenon known as clustering of high values, with a strong impact on risk assessment. The extremal index is a measure developed within Extreme Value Theory that quantifies the degree of clustering of high values. In this work we will consider the cycles estimator introduced in Ferreira and Ferreira (Ann Inst Henri Poincare Probab Stat 54(2):587–605, 2018). A reduced bias estimator based on the Jackknife methodology will be presented. The bootstrap technique will also be considered in the inference and will allow to obtain confidence intervals. The performance will be analyzed based on simulation. We found our proposal effective in reducing bias and it compares favorably with some well-known methods. An application of the methods to real data will also be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.