Abstract

For any graph G, let m(G) and i(G) be the numbers of matchings (i.e., the Hosoya index) and the number of independent sets (i.e., the Merrifield–Simmons index) of G, respectively. In this paper, we show that the linear hexagonal spider and zig-zag hexagonal spider attain the extremal values of Hosoya index and Merrifield–Simmons index, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.