Abstract

We study a formulation of regular variation for multivariate stochastic processes on the unit interval with sample paths that are almost surely right-continuous with left limits and we provide necessary and sufficient conditions for such stochastic processes to be regularly varying. A version of the Continuous Mapping Theorem is proved that enables the derivation of the tail behavior of rather general mappings of the regularly varying stochastic process. For a wide class of Markov processes with increments satisfying a condition of weak dependence in the tails we obtain simplified sufficient conditions for regular variation. For such processes we show that the possible regular variation limit measures concentrate on step functions with one step, from which we conclude that the extremal behavior of such processes is due to one big jump or an extreme starting point. By combining this result with the Continuous Mapping Theorem, we are able to give explicit results on the tail behavior of various vectors of functionals acting on such processes. Finally, using the Continuous Mapping Theorem we derive the tail behavior of filtered regularly varying Lévy processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.