Abstract

Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, technological advancements in manufacturing, robotics, and propellants are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. In recognition of the 50th anniversary of the first manned lunar landing, the National Aeronautics and Space Administration (NASA), together with the European Space Agency (ESA), revealed plans to establish a permanent human presence (habitats) on the Moon and Mars by 2040. In order to facilitate feasible and sustainable space exploration, such habitats are envisioned to be primarily built from lunar and Martian in-situ resources. To date, our understanding of indigenous resources continues to be lacking and in order to bridge this knowledge gap, this paper explores the suitability of construction materials derived from lunar and Martian regolith, along with terrestrial derivatives, for interplanetary construction. This paper also identifies key processing techniques suitable to produce extraterrestrial construction materials under alien environments (i.e., vacuum, low gravity, etc.) and showcases prominent design concepts for “space-resilient” habitats and colonies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.