Abstract

This is the second paper in a series of papers showing the results of extrasolar planet population synthesis calculations. In the companion paper (Paper I), we have presented in detail our methods. By applying an observational detection bias for radial velocity surveys, we identify the potentially detectable synthetic planets. The properties of these planets are compared in quantitative statistical tests with the properties of a carefully selected sub-population of actual exoplanets. We use a two dimensional Kolmogorov-Smirnov test to compare the mass-distance distributions of synthetic and observed planets, as well as 1D KS tests to compare the mass, the semimajor axis and the [Fe/H] distributions. We find that some models can account to a reasonable degree of significance for the observed properties. We concurrently account for many other observed features, e.g. the "metallicity effect". This gives us confidence that our model captures several essential features of giant planet formation. Our simulations allow us also to extract the properties of the underlying exoplanet population that are not yet detectable. For example, we have derived the planetary initial mass function (PIMF) and have been led to conclude that the planets detected so far represent only the tip of the iceberg. The PIMF can also be used to predict how the detectable extrasolar planet population will change as the precision of radial velocity surveys improves to an extreme precision of 0.1 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.