Abstract

Neural conduction delay is a serious issue for organisms that need to act in real time. Various forms of flash-lag effect (FLE) suggest that the nervous system may perform extrapolation to compensate for delay. For example, in motion FLE, the position of a moving object is perceived to be ahead of a brief flash when they are actually colocalized. However, the precise mechanism for extrapolation at a single-neuron level has not been fully investigated. Our hypothesis is that facilitating synapses, with their dynamic sensitivity to the rate of change in the input, can serve as a neural basis for extrapolation. To test this hypothesis, we constructed and tested models of facilitating dynamics. First, we derived a spiking neuron model of facilitating dynamics at a single-neuron level, and tested it in the luminance FLE domain. Second, the spiking neuron model was extended to include multiple neurons and spike-timing-dependent plasticity (STDP), and was tested with orientation FLE. The results showed a strong relationship between delay compensation, FLE, and facilitating synapses/STDP. The results are expected to shed new light on real time and predictive processing in the brain, at the single neuron level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call