Abstract

By intentionally underestimating the rate of convergence of exact-diagonalization values for the mass or energy gaps of finite systems, we form families of sequences of gap estimates. The gap estimates cross zero with generically nonzero linear terms in their Taylor expansions, so that $\nu = 1$ for each member of these sequences of estimates. Thus, the Coherent Anomaly Method can be used to determine $\nu$. Our freedom in deciding exactly how to underestimate the convergence allows us to choose the sequence that displays the clearest coherent anomaly. We demonstrate this approach on the two-dimensional ferromagnetic Ising model, for which $\nu = 1$. We also use it on the three-dimensional ferromagnetic Ising model, finding $\nu \approx 0.629$, in good agreement with other estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.