Abstract

We present investigations on the coherence of the emission from the fundamental mode of an AlGaInAs/GaAs quantum-dot microcavity laser. We measure the first-order field-correlation function g(1)(τ) with a Michelson interferometer, from which we determine coherence times of up to 20 ns for the highest pump powers. To fully characterize the coherence properties of the cavity emission, we apply a phenomenological model that connects the first- and second-order correlation functions. Hereby it is possible to overcome the limited sensitivity of the streak camera used for photon-correlation measurements, and thus to extend the accessible excitation-power range for g(2)(τ) down to the thermal regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.