Abstract

Abstract To check the shrinkage of the concrete considered for a design and construction project, only a limited time such as 1–3 months is usually available. So, a short-time shrinkage test must be extrapolated to much longer times, which has been known to be a difficult problem. To obtain a dependable extrapolation, it was proposed to use weight measurements of the water loss of the test specimens. However, recently some problems with this concept have been identified. The present article proposes another concept relying on the diffusion size effect in shrinkage. In a much smaller companion specimen, it is possible to reach within 1–3 months the concave part of the shrinkage curve plotted in logarithmic time scale, in which the asymptotic value is closely approached. The method is examined using the available published data on the shrinkage of specimens of different sizes. Because the size difference in the available data is too small, the method is also examined using artificial small-size data obtained by scaling according to the diffusion theory. Both cases indicate overall improvement in predicting the final asymptotic values. However, although the extrapolation is clearly better than the traditional extrapolation “by eye” or by fitting a formula to one-size data, some non-negligible discrepancies are still observed, and it is not clear whether the size effect method is better than the water loss method. In the face of this reality, further studies are recommended using tests of combined drying and autogenous shrinkages, with greater size differences of drying specimens and a refined evaluation taking into account secondary influences such as differences in cracking, hydration aging, and the inevitable effect of autogenous shrinkage in the specimen core before it is reached by the drying front. Until such studies clarify the problem, taking the more conservative result from the extrapolations by the size-effect and weight-loss methods is recommended as better than intuitive extrapolation “by eye”.

Highlights

  • Introduction and nature of problemBecause of the tremendous variety of concrete compositions, prior to designing or building a structure it is often necessary to perform short-time creep and shrinkage tests of the concrete to be used

  • The present article proposes another concept relying on the diffusion size effect in shrinkage

  • In the face of this reality, further studies are recommended using tests of combined drying and autogenous shrinkages, with greater size differences of drying specimens and a refined evaluation taking into account secondary influences such as differences in cracking, hydration aging, and the inevitable effect of autogenous shrinkage in the specimen core before it is reached by the drying front. Until such studies clarify the problem, taking the more conservative result from the extrapolations by the size-effect and weight-loss methods is recommended as better than intuitive extrapolation ‘‘by eye’’

Read more

Summary

Introduction and nature of problem

Because of the tremendous variety of concrete compositions, prior to designing or building a structure it is often necessary to perform short-time creep and shrinkage tests of the concrete to be used. Why the basic creep extrapolation does not suffer from this problem?—The basic creep curve has no characteristic time, called the halftime, and no final asymptotic value (if one uses a realistic formula with a logarithmic terminal trend, such as that from B3 or B4 models). These two characteristics are essential but can be determined only if the shrinkage test is long enough for the slope in the logarithmic time plot to approach closely the horizontal asymptote (Fig. 1).

Shrinkage formula and diffusion size effect
Extrapolation via least-square optimization
Test data used for evaluation
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call