Abstract
In this paper, we want to exemplify the use of extrapolation methods (namely, Shanks transformations, the recursive algorithms for their implementation, and the freely available corresponding MATLAB software) in the solution of nonlinear Fredholm integral equations of the second kind. Extrapolations methods are well known in some domains of numerical analysis and applied mathematics, but, unfortunately, they are not frequently used in other domains. Thus, after presenting the most simple iterative method for the solution of Fredholm equations, we will show how the sequence it produces can be accelerated (under some assumptions) and also how the underlying system of nonlinear equations generated by it can be solved quite efficiently by a restarting method. Numerical examples and comparisons with other methods demonstrate the usefulness of these procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.