Abstract

We study the numerical solution procedure for two-dimensional Laplace's equation subjecting to non-linear boundary conditions. Based on the potential theory, the problem can be converted into a nonlinear boundary integral equations. Mechanical quadrature methods are presented for solving the equations, which possess high accuracy order O(h 3) and low computing complexities. Moreover, the algorithms of the mechanical quadrature methods are simple without any integration computation. Harnessing the asymptotical compact theory and Stepleman theorem, an asymptotic expansion of the errors with odd powers is shown. Based on the asymptotic expansion, the h 3??Richardson extrapolation algorithms are used and the accuracy order is improved to O(h 5). The efficiency of the algorithms is illustrated by numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.