Abstract
Small heat shock proteins (sHSP) are molecular chaperons which play a key role in protein homeostasis under stress conditions. Point mutation of aspartic acid (D) substitution for asparagine (N) at residue 11 (D11N) in HSP16.9B protein was predicted in HSP16.9B gene in wheat. However, its impact on protein function and structural consequences has not been explored. In this study, we examined the effect of point mutation using molecular modelling and molecular dynamics (MD) simulations. Moreover, point mutation induced addition of beta-sheet before the mutation position in the mutant protein. Three-dimensional homology protein modelling, structure validation, and molecular dynamics were carried out to investigate the conformational transitions and dynamics of the HSP16.9B protein due to D11N non-synonymous single nucleotide polymorphism (nsSNP). The MD results indicated that the stability of the mutant protein structure during entire simulation runs. Altogether, our investigation will provide useful understanding related to structural and functional basis of HSP16.9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Bioinformatics Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.