Abstract

Measured data are generally preferred to modelled estimates of exposure. Grouping and read-across is already widely used and accepted approach in toxicology, but an appropriate approach and guidance on how to use existing exposure measurement data on one substance and work situation for another substance and/or work situation is currently not available. This study presents a framework for an extensive read-across of existing worker inhalable exposure measurement data. This framework enables the calculation of read-across factors based on another substance and/or work situation by first evaluating the quality of the existing measurement data and then mapping its similarity or difference with another substance and/or work situation. The system of read-across factors was largely based on the determinants in ECETOC TRA and ART exposure models. The applicability of the framework and its proof of principle were demonstrated by using five case studies. In these case studies, either the 75th percentiles of measured exposure data was observed to lie within the estimated 90% confidence intervals from the read-across approach or at least with the increase in the geometric mean of measured exposure, geometric mean of estimated exposure also increased. Testing and re-evaluation of the present framework by experts in exposure assessment and statistics is recommended to develop it further into a tool that can be widely used in exposure assessment and regulatory practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.