Abstract

Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion sigma_c, the `M-sigma' relation. On the other hand, evidence for "intermediate-mass" black holes (IMBHs, with masses in the range 1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M-sigma relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M-sigma relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M-sigma relation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call