Abstract

We present a new class of high-order imaginary time propagators for path integral Monte Carlo simulations that require no higher order derivatives of the potential nor explicit quadratures of Gaussian trajectories. Higher orders are achieved by an extrapolation of the primitive second-order propagator involving subtractions. By requiring all terms of the extrapolated propagator to have the same Gaussian trajectory, the subtraction only affects the potential part of the path integral. The resulting violation of positivity has surprisingly little effects on the accuracy of the algorithms at practical time steps. Thus in principle, arbitrarily high order algorithms can be devised for path integral Monte Carlo simulations. We verified the fourth, sixth, and eighth order convergences of these algorithms by solving for the ground state energy and pair distribution function of liquid (4)He, which is representative of a dense, and strongly interacting, quantum many-body system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.