Abstract
Biogeography-Based Optimization (BBO) uses the idea of probabilistically sharing features between solutions based on the solutions’ fitness values. Therefore, its exploitation ability is good but it lacks in exploration ability. In this paper, the authors extend the original BBO and propose a hybrid version combined with ePSO (particle swarm optimization with extrapolation technique), namely eBBO, for unconstrained global numerical optimization problems in the continuous domain. eBBO combines the exploitation ability of BBO with the exploration ability of ePSO effectively, which can generate global optimum solutions. To validate the performance of eBBO, experiments have been conducted on 23 standard benchmark problems with a range of dimensions and diverse complexities and compared with original BBO and other versions of BBO in terms of the quality of the final solution and the convergence rate. Influence of population size and scalability study is also considered and results are compared with statistical paired t-test. Experimental analysis indicates that the proposed approach is effective and efficient and improves the exploration ability of BBO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Evolutionary Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.