Abstract

We present the optical properties of a new type of photonic crystal (PC) named star-shaped PC (STAR-PC) with anomalous equi-frequency contours. Intentionally introducing low-symmetry in the primitive unit cell gives rise to progressively tilting flat contours, which are observed in the fifth band of the transverse magnetic mode. Due to the intrinsic dispersive feature of the proposed PCs, i.e. tilted self-collimation, the incident signal with different wavelengths can be successfully separated in a spatial domain without introducing any corrugations or complexities inside the structure. We show numerical investigations of wavelength selective characteristic of the proposed PC structure in both time and frequency domains. The STAR-PC approach can be considered a good candidate for the wavelength division applications in the design of compact photonic integrated circuits. For the purpose of wavelength separation implementations, the proposed structure may operate within the wavelength interval of 1484.5–1621.5nm with a broad bandwidth of 8.82%. The corresponding inter-channel crosstalk value is as low as −19dB and the calculated transmission efficiency is above 97%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call