Abstract

We revisit the problem of extraordinary transmission of acoustic (electromagnetic) waves through a slit in a rigid (perfectly conducting) wall. We use matched asymptotic expansions to study the pertinent limit where the slit width is small compared to the wall thickness, the latter being commensurate with the wavelength. Our analysis focuses on near-resonance frequencies, furnishing elementary formulae for the field enhancement, transmission efficiency, and deviations of the resonances from the Fabry–Pérot frequencies of the slit. We find that the apertures’ near fields play a dominant role, in contrast with the prevalent approximate theory of Takakura (2001). Our theory agrees remarkably well with numerical solutions and electromagnetic experiments (Suckling et al., 2004), thus providing a paradigm for analysing a wide range of wave propagation problems involving small holes and slits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.