Abstract

All existing solar cell materials including hybrid perovskites show rather small absorption coefficient (α) of ≈104 cm−1 in the bandgap (Eg) transition region. The weak band‐edge light absorption is an essential problem, limiting conversion efficiency particularly in a tandem solar cell. Herein, all distorted chalcogenide perovskites (BaZrS3, SrZrS3, BaHfS3, and SrHfS3) are found experimentally to exhibit extraordinary high α exceeding 105 cm−1 near Eg, indicating the highest band‐edge α among all known solar cell materials. The giant absorption in the Eg region, which is consistent with the first principles, arises from the intense p–d interband transition enabled by dense S 3p valence states. For solar cell application, low‐gap BaZrS3 derivatives, Ba(Zr,Ti)S3 and BaZr(S,Se)3, are further synthesized. Among the possible candidates of top‐cell materials, an earth‐abundant and nontoxic Ba(Zr,Ti)S3 alloy shows great potential, reaching a maximum potential efficiency exceeding 38% in a chalcogenide perovskite/crystalline Si tandem architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.