Abstract

Acetylene (C2H2) separation from multicomponent mixtures is vitally important but industrially challenging for the collection of high-purity C2H2. To address this requirement, the reaction between the alkaline-earth Ca2+ ions with a dicarboxylate-diazolate linker, 4,6-di(1H-tetrazol-5-yl)isophthalic acid (H4dtzip), gave rise to a new metal-organic framework (MOF) material [Ca(dtzip)0.5H2O]·2H2O (1). The material presents unique regular tubular channels based on threefolded helical rod-like secondary building units with rich open metal sites and exposed organic hydrogen-bonding N/O acceptors that enhance the interactions with C2H2 molecules, endowing significant selectivity for C2H2 over C2H4 (5.4), C2H6 (5.6), CH4 (30.0), and CO2 (7.7) at 298 K and 100 kPa. Column breakthrough experiments confirmed the extraordinary C2H2 separation performance of the material with the separation time intervals in the range of 18-24 min g-1 for binary (C2H2-C2H4, C2H2-C2H6, C2H2-CO2, and C2H2-CH4) or ternary (C2H2-C2H4-C2H6 and C2H2-C2H4-CO2) gas mixtures under dynamic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.