Abstract

The effectiveness of graphene oxide (GO) on improving the ablation resistance of composite is investigated by incorporating a low concentration of GO (0.1 wt%) into the carbon/phenolic (CF/PR). The X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy analyses reveal that the superiority of GO-filled composite over the neat in terms of thermal resistance is associated with the promoted char yield of PR and graphitization of fibers by the addition of GO. Molecular dynamics simulations identify the GO inside the matrix, even a small concentration, as a nuclei agent for the graphitized crystal growth of carbonized PR. And the GO at the fiber-matrix interface can bond to the fibers at extreme ablation temperatures, which promotes the formation of the Stone-Thrower-Wales defect (xy plane) and sp2 hybridization (z direction) at the graphene-fiber interface, and further increases the graphitization degree of fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.