Abstract

AbstractThe family Tachinidae (“bristle flies”) is the most diverse and ecologically important group of insect parasitoids outside the parasitic wasps. It is among the most species rich families of flies (Diptera) and has experienced a recent adaptive radiation across the globe. We make use of a molecular phylogeny of the family to examine its rapid radiation and explore the traits of tachinid lineages that may have contributed to variation in their diversification. We apply a range of diversification analyses to assess the consistency and robustness of effects. We find that the Tachinidae are among the most rapidly diversifying families of animals. Six to eight clades of bristle flies, distributed across the phylogeny, exhibit strong evidence of accelerated diversification. Our results suggest that the use of holometabolous insect larvae, and specifically caterpillars (Lepidoptera), as hosts, is associated with increased diversification rates. However, these effects were inconsistent across analyses. We detected little influence of oviposition strategy (egg type) or host feeding habit, and we recovered evidence that unmeasured “hidden” traits may explain greater variance in diversification. We evaluated the strengths and weaknesses of different Maximum Likelihood and Bayesian approaches for analysing diversification and the potential for extrinsic factors, such as geography, to influence patterns of richness and diversification. In general, we conclude that although certain traits may provide opportunities for diversification, whether this is capitalized on may depend on additional traits and/or historical contingency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call