Abstract

The commercial V2O5 −WO3/TiO2 (VWTi) catalysts often suffer from a serious joint deactivation by multiple heavy metals in the flue gas for NOx removal by NH3-SCR. Herein, we report an extraordinary deactivation offset effect between Zn and As on VWTi with alleviation of the toxic effects of the heavy metals by “like cures like”. With the As&Zn content of 4 wt%, VWTi-As&Zn exhibited over 97% NO conversion under a GHSV of 100,000 h−1 and good SO2/H2O tolerance (> 93% NO conversion). It’s presented 85% of fresh VWTi, exceeding those of VWTi-Zn (15%) by 5.6-fold and VWTi-As (70%) by 1.2-fold. Structure analysis showed that, unlike VWTi-As and VWTi-Zn, the VO vibration and dispersion state of VOx sites over VWTi-As&Zn were hardly affected. Moreover, VWTi-As&Zn possessed both the Lewis and Brønsted acid sites while VWTi-Zn and VWTi-As had only one type of them. The operando infrared/Raman/UV–vis spectroscopy and DFT calculations verified that the less affected VOx sites mainly reflected in three aspects: 1) the electron interaction between As and Zn; 2) the active VO Lewis acid sites; 3) lower energy barrier for N − H bond breaking. The “like cures like” phenomenon may open up an innovative pathway for the control of hazardous heavy metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call