Abstract

The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles “bifurcate” their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions.

Highlights

  • The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day

  • Considered as a group, the LDark7:5 mice entrained with significantly less symmetric distribution of activity between the scotophases compared to LDim7:5 mice and with a greater fraction of activity occurring in the light (Table 1; see Supplementary Fig. S1)

  • The addition of very dim light at night categorically altered the manner in which mice entrained to 24 h LDLD cycles

Read more

Summary

Introduction

The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Exposure to dim nocturnal illumination (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.