Abstract

Using an optical nanoresonator to realize extreme concentration of light at subwavelength nanoscale dimensions is of both fundamental and practical significance. Unfortunately, the optical cross section of an isotropic nanoresonator is determined by the resonant wavelength, which unfavorably limits the highest concentration ratio. Here we show that the cross section of a localized subwavelength resonator can be drastically enhanced by orders of magnitude. A single microscopic nanoresonator could exhibit a macroscopic optical cross section. We further show that the enhancement can be implemented in simple dielectric structures that are readily compatible with optoelectronic integration. The giant optical cross section of a nano-object provides a versatile platform to create extremely strong light-matter interactions at the nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.