Abstract

The study of extraordinarily high organic matter content (EHOMC) is beneficial to promote the fine evaluation of shale oil and gas, but so far, there have been few studies on its mechanism. This paper carried out a comprehensive lithological and geochemical analysis of the black shales of the Wujiaping Formation in the Kaijiang-Liangping Trough. The results showed that the black shales of the Wujiaping Formation can be divided into two units (the upper and lower parts), and EHOMC occurs in its upper part. The redox-sensitive trace elements (RSTEs), MoEF-UEF covariation, and Ni/Co correlation showed that the lower part of Wujiaping Formation was a weakly restricted oxidation environment, while the upper part evolved into a sulfidation reducing environment. The productivity indicator elements (BaXS, NiXS, CuXS, P, and Mo) indicated that the upper Wujiaping Formation had higher primary productivity than the lower part. However, rare earth elements ((La/Yb)N) indicated that the deposition rate in the lower part of the Wujiaping Formation was higher than that in the upper part. In general, although the oxygenated water in the lower part of the Wujiaping Formation is not conducive to the preservation of organic matter, the high input of nutrients from land sources and the high deposition rate inhibit the decomposition of organic matter, so the lower part has a certain degree of organic matter accumulation. The sulfidation reducing environment and high paleoproductivity are the main reasons for the enrichment of organic matter in the upper part of the Wujiaping Formation. In addition, the sulfidation reducing environment and high paleoproductivity occurred during the violent upwelling at the end of Guadeloupe, a period of high sea level, these factors have jointly contributed to the enrichment of OM in the upper the Wujiaping Formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call