Abstract

There is strong evidence that acid phosphatase (AcPase) plays an important role in the catabolism of the glomerular basement membrane (GBM) and the removal of macromolecular debris resulting from ultrafiltration. Recent enzyme histochemical investigations provide new evidence of the antithrombotic and anti-inflammatory function of ADPase and on the distribution of AcPase in mouse kidney tubule cells. By means of 3 mM cerium as the trapping agent and 1 mM p-nitrophenyl phosphate as the substrate, extralysosomal AcPase could be demonstrated at the ultrastructural level. Following a mild perfusion fixation (2% formaldehyde + 0.07% glutaraldehyde), an effective postfixation and short enzyme incubations (20 min) with microwave irradiation, highly specific enzyme histochemical reaction product and reasonable structural preservation were obtained. Extralysosomal, membrane-bound AcPase was observed along the endoplasmic reticulum, the trans-Golgi cisternae, the nuclear envelope, basal infoldings of the proximal and distal tubular cells and on glomerular profiles, e.g. cell membranes of podocytes, endothelium and basement membrane. Large amounts of extralysosomal AcPase were observed in the basement membrane of glomeruli, in contrast to no AcPase activity in the tubular and mesangial basement membrane. The observed difference in AcPase activity in the tubular epithelial basement membrane and the GBM supports the idea that AcPase in GBM specifically serves in the clearance of macromolecular debris to facilitate ultrafiltration. In the GBM a laminar distribution is observed, suggesting that both epithelial and endothelial cells are involved in the production of AcPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.