Abstract
ABSTRACT The primary focus of this study is how to expedite the convergence rate of the extragradient method by tactfully choosing inertial parameters and building up the step-size rule. To achieve this goal, we introduce three improvements to Korpelevich's extragradient method. These improvements include the use of dual inertial steps as well as a self-adaptive step-size rule. The proposed iterative techniques are employed for solving equilibrium problems in real Hilbert spaces. Initially, we establish the results for weak convergence of the proposed methods, assuming the involved bifunction to be both pseudomonotone and Lipschitz-type continuous. Subsequently, we demonstrate linear convergence in scenarios where the bifunction is strongly pseudomonotone and Lipschitz-type continuous. Finally, we present multiple numerical experiments to illustrate the practical effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.