Abstract
In this paper, 2 extragradient methods for solving differential variational inequality (DVI) problems are presented, and the convergence conditions are derived. It is shown that the presented extragradient methods have weaker convergence conditions in comparison with the basic fixed‐point algorithm for solving DVIs. Then the linear complementarity systems, as an important and practical special case of DVIs, are considered, and the convergence conditions of the presented extragradient methods are adapted for them. In addition, an upper bound for the Lipschitz constant of linear complementarity systems is introduced. This upper bound can be used for adjusting the parameters of the extragradient methods, to accelerate the convergence speed. Finally, 4 illustrative examples are considered to support the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.