Abstract

Behavioral and morphological changes were examined for up to 9 days after moderate cerebral ischemia caused by slow compression of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. Functional deficits after the cerebral ischemia were assessed by daily beam-walking tests, whereas morphological changes were verified using Nissl staining on day 1, 2, 3, 5, and 9, respectively. Rats exposed to cerebral ischemia displayed impaired beam walking performance. Mild hypothermia prevented both the compression-produced functional deficits and the brain damage. Younger (5 weeks) animals showed less neurological deficits than older (9 weeks) animals. Histological examination revealed a pronounced increase in the number of injured pyramidal neurons from day 1 to day 3 in the primarily damaged brain region. Between day 3 and day 5, the number of injured cells remained constant, whereafter there was a slow decline of thionin-positive neurons as examined on day 9. The noncompetitive NMDA receptor antagonist, dizocilpine (MK-801; 3 mg/kg, i.p.), did not alter the neurological impairment on day 1, but improved thereafter the rate of functional recovery and reduced the number of damaged cells. The AMPA receptor antagonist, LY326325 (15 or 30 mg/kg; i.p.), dose-dependently diminished the neurological deficits on day 1, enhanced the rate of recovery, and reduced the number of injured neurons over time. Our data suggest that short-lasting extradural compression of a well-defined brain area in the sensorimotor cortex is a highly reproducible model with a high success rate for the study of functional and morphological consequences after cerebral ischemia as well as for the evaluation of the therapeutic potential of novel, neuroprotective pharmacological agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.