Abstract

In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.