Abstract

This study used a machine learning framework in conjunction with a large battery of measures from 9,718 school-age children (ages 9-11) from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study to identify factors associated with fluid cognitive functioning (FCF), or the capacity to learn, solve problems, and adapt to novel situations. The identified algorithm explained 14.74% of the variance in FCF, replicating previously reported socioeconomic and mental health contributors to FCF, and adding novel and potentially modifiable contributors, including extracurricular involvement, screen media activity, and sleep duration. Pragmatic interventions targeting these contributors may enhance cognitive performance and protect against their negative impact on FCF in children.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.